

Lawrence
Livermore
National
Laboratory

U.S. Department of Energy

Approved for public release; further dissemination unlimited

UCRL-ID-153359

Performance Technologies
for Peta-Scale Systems:
A White Paper Prepared by
the Performance
Evaluation Research
Center and Collaborators

D.H. Bailey, B. de Supinski, J. Dongarra,
T. Dunigan, G. Gao, A. Hoisie, P. Hovland, J. Hollingsworth
D. Jefferson, C. Kamath, A. Malony, B. Norris, D. Quinlan
S. McKee, C. Mendes, S. Moore, D. Reed, A. Snavely,
E. Strohmaier, J. Vetter, P. Worley

May 20, 2003

This document was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor the University of California nor
any of their employees, makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or the University
of California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or the University of California, and shall not be
used for advertising or product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by University
of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

Performance Technologies for Peta-Scale Systems:
A White Paper Prepared by the Performance Evaluation

Research Center and Collaborators

David H. Bailey (LBNL); Bronis de Supinski (LLNL), Jack Dongarra (U. Tenn.),
Thomas Dunigan (ORNL), Guang Gao (U. Del.) , Adolfy Hoisie (LANL),

Paul Hovland (ANL), Jeffrey Hollingsworth (U. Mar.), David Jefferson (LLNL),
Chandrika Kamath (LLNL), Allen Malony (U. Oregon), Boyanna Norris (ANL),

Daniel Quinlan (LLNL), Sally McKee (Cornell U.), Celso Mendes (U. Ill.),
Shirley Moore (U. Tenn.), Daniel Reed (U. Ill.), Allan Snavely (SDSC),

Erich Strohmaier (LBNL), Jeffrey Vetter (LLNL), Patrick Worley (ORNL)

Prepared in Response to the Invitation to Submit White Papers on High End Computing

May 14, 2003

Introduction

Future-looking high end computing initiatives will deploy powerful, large-scale computing plat-
forms that leverage novel component technologies for superior node performance in advanced
system architectures with tens or even hundreds of thousands of nodes. Recent advances in per-
formance tools and modeling methodologies suggest that it is feasible to acquire such systems
intelligently and achieve excellent performance, while also significantly reducing the user time
required to attain high performance. These developments are relevant to several aspects of fu-
ture HEC technology outlined in the recent HECRTF white paper request, in particular items 5.4,
5.5, 5.6, and 5.8. We envision the following specific capabilities:

1. Performance modeling tools, available to researchers and vendors, will extrapolate perform-
ance from prototype systems to full-scale systems, and even accurately predict performance be-
havior before systems are manufactured, thus enabling both improved designs and more intelli-
gent selection of systems in procurements.
2. System simulation facilities, implemented on highly parallel platforms and available to re-
searchers and vendors, will for instance realistically model the performance of a specific inter-
processor network design running a specific scientific application code. As with item 1, these
facilities can lead both to improved designs and procurement decisions that yield significantly
greater sustained performance for targeted scientific applications.
3. A program monitoring and analysis infrastructure, scalable to 100,000 processors and beyond,
will provide performance information at every level of system’s memory hierarchy and network.
This infrastructure will build upon knowledge discovery and data mining techniques to be sig-
nificantly more scalable and easier to use than the current infrastructure, and a standard version
will be incorporated in most high-end systems.
4. Self-tuning software facilities, now available only for a few specialized libraries and requiring
separate test runs, will be integrated into a broad range of scientific application codes. Eventu-
ally these facilities will make use of the performance monitoring infrastructure mentioned above,
and will extend to dynamic optimization at the subroutine level.

Each of these capabilities appears to be feasible, based on successes in current research projects.
However, while the prototypes of many of these facilities are already in hand, significant addi-
tional research and development will be required to realize the full potential described above. In
the following, we sketch some of this required research.

Performance Monitoring Infrastructure
Informal approaches to parallel performance monitoring and analysis may be acceptable at the
present time, but such approaches will be woefully inadequate once systems are fielded with
multiple levels of parallelism throughout the system’s compute nodes, network, and memory hi-
erarchy, and including tens or hundreds of thousands of compute nodes. It is also unlikely that
we can effectively model and utilize novel architecture systems without the aid of an advanced
monitoring infrastructure.

Advanced hardware performance monitoring facilities will be required to obtain performance
data without significant perturbation. A key challenge beyond counting of events throughout the
system is in gathering and interpreting the exploding quantity of data. Even now, collecting
memory access pattern information, which is often crucial for understanding performance on
deep-memory-hierarchy machines, implies a three orders-of-magnitude slowdown [17]. Yet
many applications of interest run for hours or days, during which their performance behavior

changes frequently. Systems with tens or hundreds of thousands of processors will greatly com-
pound this performance data analysis problem. Several alternatives are being explored, ranging
from clever statistical sampling schemes to on-the-fly analysis of performance data that would
reduce the amount of data involved. Meaningful analysis of this data will require advanced
techniques such as multivariate statistical methods [1], knowledge discovery tools [19], time se-
ries analysis [21] and advanced visualization schemes [2] to distill important facts from these
potentially massive data sets. This analysis can then be used to select the key features used in
monitoring performance and to build predictive models of the performance of a single processor
as well as the entire parallel system.

A unique opportunity exists for performance researchers to work with vendors to improve the
selection of hardware performance data. Ideally, design of performance monitoring hardware
should be driven by data input needs for application performance modeling and analysis, rather
than modeling and analysis capabilities being limited by the available data. For example, one
key item that current hardware monitors lack is information regarding memory addresses, such
as data on gaps or patterns between successive addresses. This information would provide valu-
able insights into the memory behavior of a user program. Along this line, we observe that the
counters currently available have been designed primarily to address the needs of vendor bench-
mark personnel. Hopefully in the future vendors will consider counters useful to application de-
velopers and performance tuners as well, for example by implementing the PAPI proposed stan-
dard metrics [3].

Another area where the performance research and vendor design communities could work to-
gether is to extend inter-processor network hardware performance monitoring facilities to appli-
cation performance analysis. Although network hardware often includes some performance
monitoring facilities, the lack of support to associate performance data with a specific application
code significantly hinders applying the data to application performance evaluation. The use of
reconfigurable technology (such as FPGAs) might be of use to support performance-monitoring
applications, for both hardware engineers and end users. Determining what events are most im-
portant to monitor, designing systems to support low-overhead monitoring that generates infor-
mation useful to application developers, and designing software to utilize this information, are
important topics of future research.

Any improvements that are made in the capabilities of performance tools must be matched by a
corresponding improvement in ease of use, or otherwise they will have only limited impact in the
overall goals of reducing time to solution and simplifying system acquisitions. In this regard, it
is instructive to observe that while many professionals in the HEC field have produced web con-
tent, very few have taken formal training in HTML. Instead, most have merely copied and
adapted a colleague’s HTML or used higher-level tools. In a similar vein, we envision a set of
standard templates for performance analysis that automatically engage a typical performance
analysis scenario, using advanced tools. Monitoring should be as automatic as possible. For ex-
ample, users should be able to specify data of interest at a higher level and in a standard manner
across systems, without having to install the monitoring software themselves or write low-level
library calls. High-levels tools could significantly increase the user base of performance facili-
ties. These facilities would also apply existing tools for knowledge discovery to performance
data. The application of techniques such as decision trees to performance data has been initially
explored [19, 14], but clearly significant additional research in this area is needed.

Performance Modeling

Item 5.8 in the current call emphasizes the need to develop improved methodologies for procur-
ing high-end computer systems. As systems become ten times or more larger in memory and
computing power than those in operation at the time of the acquisition, both the challenge of
making informed procurement choices, and the penalty for mistakes, will be correspondingly
greater. Novel architectures, distinct in design and technology from any existing systems (such
as those being explored in DARPA’s HPCS program), will compound this challenge.

The emerging technology of performance modeling holds the key to meeting these challenges.
For example, accurate performance models for several full applications from the ASCI workload
[8, 11, 12] are routinely utilized for system design, optimization and maintenance. Moreover, a
similar model has been used in the procurement process for the ASCI Purple system, predicting
the performance of the code SAGE on several the systems in a recent competition [9]. Alterna-
tive modeling strategies have been used to model the NAS Parallel Benchmarks, several small
PETSc applications, and the applications POP (Parallel Ocean Program), NLOM (Navy Layered
Ocean Model), and Cobal60, across multiple compute platforms (IBM Power 3 and Power 4 sys-
tems, a Compaq Alpha server, and a Cray T3E-600) [4, 17]. These models are extremely accu-
rate across a range of processors (from 2 to 128), with errors ranging from 1% to 16%.

These results suggest that it is possible to accurately predict the performance achieved by a fu-
ture system (much larger in size and employing a distinct design from hardware currently in op-
eration) [13], running a future scientific application (much larger in problem size than currently
being run). We can even envision that a future call for proposals for a system procurement will
specify that the vendor run some small loops or other simple test code on the vendor’s system
simulator (or even on prototype hardware) and report the results, thus providing the required in-
put data for performance models of key applications. Decision makers would have at their dis-
posal not only performance information but also the capability to pursue “what if” scenarios.
Other uses include improved system configuration and system maintenance [4, 8, 9, 11, 17].

Executable analytical performance evaluation also shows promise [11]. These techniques can
evaluate early stage architecture designs over a wide operating range, and are thus helpful in
identifying advantageous architectural features, before instruction set architectures and other fea-
tures are firmly established, and before system software (runtime systems or compilers) is avail-
able. The methodology here is to model program execution through a program graph that mod-
els thread-level parallelism in the application. The program graph is executed on the architecture
model, while the resulting analytical model is solved using a queuing network tool enriched with
synchronization. This approach has been applied to evaluate the impact of “percolation,” which
was first proposed for HTMT, and is now being studied under DARPA HPCS funding.

Performance models can even be used within a user code to control the execution dynamically
for best performance. Along this line, some researchers are considering using simple perform-
ance models to improve load balancing in unstructured grid applications. All of this underscores
the need for a variety of performance modeling methodologies, ranging from simple, curve-
fitting approaches to sophisticated tools that perform a thorough inventory of all operations per-
formed by the target application program on a particular system. However, much work is re-
quired to further automate and reduce the complexity, “craftiness” and cost of the modeling
work. In addition, more work is needed define a better interface between “traditional tools”
(such as profilers, timers and hardware performance monitors) and modeling tools.

System Simulation

System simulation is another mechanism that could provide greater understanding of perform-
ance phenomena. At the recent High-Speed Computing Conference in Oregon, one speaker
noted that although computational scientists have become highly skilled in simulating physical
phenomenon, as yet they have not exploited this technology to understand the performance be-
havior of their applications. This indicates a “last mile” disconnect: a few system simulators are
available in the research community [16], and vendors often develop cycle-accurate or near-
cycle-accurate simulators as part of their product development, but computational scientists
nonetheless rarely use such tools to understand or predict the performance of their applications.

Several challenges must be overcome for these simulators to be useful to application perform-
ance understanding. Perhaps most importantly, simulator execution times required to analyze
performance for even a small loop are very large; the analysis of a full-length application code
has been out of the question. Another common weakness of these simulators is that they typi-
cally target only single processor systems, or at best shared memory multiprocessor systems.

But with the emergence of highly parallel computing platforms, we can consider highly detailed
parallel simulations of scalable systems. Low-level processor-memory behavior can be mostly
decoupled from the analysis of inter-processor network phenomena. Then, once the communica-
tion behavior of an application has been profiled, one can simulate its inter-processor network
behavior by generating a sequence of communication operations on each node, mimicking the
statistics of frequency and message length typical of the program’s phases.

Ideally, we envision an open-source architectural simulation framework and API that enables
plug-and-play between separately-developed simulators for different architectural features (e.g.,
PIM, polymorphic multithreaded processor, and network), and would also enable zoom-out and
zoom-in between statistically-based and cycle-accurate simulation techniques. This framework
will, however, require significant advances in simulation methodologies in order to support con-
current use of modules running at different time-scales and based on different simulation tech-
niques. For example, current architectural simulation engines tend to be time-stepped; but realis-
tic models of scalable hardware and software are much too dynamic, asynchronous, and tempo-
rally sparse for that kind of synchronization. Instead, we anticipate that the simulations will be
decomposed into logical processes, and will be synchronized by either conservative or optimistic
methods (or both), as developed in the parallel discrete event simulation (PDES) community [7,
10]. With that approach, the high degree of real parallelism these systems exhibit will tend to
translate to a similarly high degree of computational parallelism in the simulation as well.

Libraries, Compilers and Self-Tuning Software
It is not sufficient to merely study the performance of large future systems – facilities for auto-
matic and/or semi-automatic performance tuning must also be improved. One approach here is
to expand the scope of optimized scientific libraries for high performance computing. Three ca-
nonical examples are the ScaLAPACK, PETSc, and the NWChem libraries. Some related efforts
include the emergence of the Community Climate Code (CCM) in the climate modeling commu-
nity and similar efforts to unify fusion and accelerator modeling computations.

One of the more promising developments in this arena is the recent emergence of “self-tuning”
library software. Examples include the FFTW library [6] and versions of ATLAS, ScaLAPACK,
and LFC library routines [5]. The approach is to run, in an initialization step, a program that

tests a number of different computational strategies (such as different parameters for array pad-
ding or cache blocking). The tuning program then selects the option that demonstrates the best
performance in the test run for future production runs. This general approach can be extended to
almost any large-scale software library. However, the process of devising tests, determining op-
timal parameters and using the resulting parameters in the production code must be simplified if
this general scheme is to be implemented widely. One possibility here is to combine rapid, on-
the-fly performance modeling with such self-adaptive, self-tuning codes to narrow the parameter
space for trying different computational strategies.

Eventually these self-tuning facilities can be incorporated directly into conventional user code.
In other words, we foresee the time when self-tuning facilities will be understood well enough
that they can be inserted by a preprocessor (and eventually perhaps by a compiler) directly into a
user code at the start of the main program, or even at the subroutine level. Parallel processing
can be utilized in a novel way here. The first iteration can be performed using different low-
level data layout options on each processor. Then after the first iteration, the program uses the
best performing choice on all nodes. This may seem futuristic, but in reality the basic facilities
have already been demonstrated in current research (mostly in the PERC project), including self-
tuning library software, performance assertions, compiler enhancements and semiautomatic code
modifications [15]. In addition, the Active Harmony system (another PERC activity) has dem-
onstrated the ability to automatically improve the performance of some large scientific applica-
tion programs, including the POP ocean model code [18].

In this regard, it is instructive to recall the history of vector computing. Initially, compilers of-
fered little or no assistance – it was necessary for programmers to explicitly vectorize loops.
Then semi-automatic vectorizing compilers became available, which eventually were quite suc-
cessful. The final step was run-time vectorization, with compilers generating both scalar and
vector code, and then deciding at run time if the vector code is safe. We see a similar long-term
potential for self-tuning code that makes use of performance monitoring. Other ideas for com-
piler technology that show promise include dynamic compilation and compile-time searching for
optimal run-time alternatives, including array blocking, loop fusion and fission, flexible data
layout and array padding. Since these changes in several cases go beyond the limits of what is
permissible according to existing language standard definitions, this points to the need to work
with language standard committees in tandem with this research.

Conclusion
Designing, deploying and programming the next generation of high-end computing platforms,
which will feature tens or hundreds of thousands of processors, with new designs such as proces-
sor-in-memory or multi-threaded architectures, requires advanced tools (both hardware and
software) to monitor, model and control performance. We believe that such facilities can be de-
veloped, although there are many questions that remain to be answered.

References:
[1] D. H. Ahn, J. S. Vetter, “Scalable Analysis Techniques for Microprocessor Performance Counter Metrics,” Pro-

ceedings of SC 2002, IEEE, Nov. 2002.
[2] R. P. Bosch Jr., “Using Visualization to Understand the Behavior of Computer Systems,” Stanford University

Ph.D. dissertation, Aug. 2001.
[3] S. Browne, J. Dongarra, G. Ho, N. Garner, P. Mucci, “A Portable Programming Interface for Performance

Evaluation on Modern Processors”, International Journal of High Performance Computing Applications, vol.
(2000), pg. 189-204.

[4] L. Carrington, A. Snavely, N. Wolter, X. Gao, “A Performance Prediction Framework for Scientific Applica-
tions,” Workshop on Performance Modeling and Analysis - ICCS, Melbourne, June 2003.

[5] J. Dongarra and V. Eijkhout, “Self Adapting Numerical Algorithm for Next Generation Applications”, to appear
in International Journal of High Performance Applications and Supercomputing, 2003.

[6] M. Frigo and S. Johnson, “FFTW: An Adaptive Software Architecture for the FFT”, Proceedings of the Inter-
national Conference on Acoustics, Speech, and Signal Processing, Seattle, WA, May 1998.

[7] R. Fujimoto, Parallel and Distributed Simulation Systems, Wiley Interscience, January, 2000.
[8] A. Hoisie, O. Lubeck, H. Wasserman, “Performance and Scalability Analysis of Teraflop-Scale Parallel Archi-

tectures Using Multidimensional Wavefront Applications,” The International Journal of High Performance
Computing Applications, vol. 14, no. 4 (Winter 2000).

[9] A. Jacquet, V. Janot, R. Govindarajan, C. Leung, G. Gao, and T. Sterling, “An Executable Analytical Perform-
ance Evaluation Approach for Early Performance Prediction”, Proceedings of IPDPS’03, 2003.

[10] D. Jefferson, B. Beckman, F. Wieland, L. Blume, M. DiLoreto, P. Hontalas, P. Laroche, K. Sturdevant, J. Tup-
man, V. Warren, J. Wedel, H. Younger, S. Bellenot, “Distributed Simulation and the Time Warp Operating Sys-
tem”, 11th Symposium on Operating Systems Principles, Austin, TX, Nov., 1987.

[11] D. J. Kerbyson, H. Alme, A. Hoisie, F. Petrini, H. Wasserman, M. Gittings, “Predictive Performance and Scal-
ability Modeling of a Large-Scale Application”, Proceedings of SC2001, IEEE, Nov. 2001.

[12] M. Mathis, D. Kerbyson, A. Hoisie, “A performance model of non-deterministic particle transport on large-
scalesystems”, Workshop on Performance Modeling and Analysis - ICCS, Melbourne, June 2003.

[13] D. J. Kerbyson, H. J. Wasserman, A. Hoisie, “Exploring Advanced Architectures using Performance Predic-
tion,” in Innovative Architecture for Future Generation High-Performance Processors and Systems, IEEE
Computer Society Press, 2002, pg. 27-37.

[14] B. P. Miller, M. D. Callaghan, J. Cargille, J. K. Hollingsworth, R. B. Irbin, K. Karavanic, K. Kunchithapadam,
T. Newhall, “The Paradyn Parallel Performance Measurement Tools,” IEEE Computer, vol. 28 (1995), no. 11,
pg. 37-46.

[15] D. Quinlan, M. Schordan, B. Philip and Kowarschik, M., “Parallel Object-Oriented Framework Optimization,”
to appear in Special Issue of Concurrency: Practice and Experience, 2003.

[16] M. Rosenblum, “SimOS,” available at http://simos.stanford.edu.
[17] A. Snavely, L. Carrington, N. Wolter, J. Labarta, R. Badia A. Purkayastha, “A Framework for Performance

Modeling and Prediction,” Proceedings of SC2002, IEEE, Nov. 2002.
[18] Tapus, C., I.-H. Chung, and J.K. Hollingsworth, “Active Harmony: Towards Automated Performance Tuning,”

in Proceedings of SC2002, IEEE, Nov. 2002.
[19] J. S. Vetter, “Performance Analysis of Distributed Applications using Automatic Classification of Communica-

tion Inefficiencies,” Proceedings of the ACM International Conference on Supercomputing (ICS), ACM Press,
2000.

[20] J. S. Vetter, P. Worley, “Asserting Performance Expectations,” Proceedings of SC2002, IEEE, Nov. 2002.
[21] M. Wang, T. Madhyastha, N. H. Chan, S. Papadimitriou, C. Faloutsos, “Data Mining Meets Performance

Evaluation: Fast Algorithms for Modeling Bursty Traffic, International Conference on Data Engineering, 2001.

Contact Information:
David H. Bailey
Lawrence Berkeley National Laboratory
Berkeley, CA 94720
Email: dhbailey@lbl.gov
Tel: 510-495-2773

	DISCLAIMER

